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1. Int roduct i n

We as'suref, fnat G is an unknown prior distribution on ,., and denote

the i i injr n ri',k in a decision problem by r(G). Robbins, in his

,er' [1955], [1964], proposed sequences of decision rules,

based )n I,, fret'ro n independent repetitions of the same decision problem,

whose ( ,t stiqe Bayes risk converges to r(G) as n - . Such sequences

ot r il., ar, called empirical Bayes rules. Empirical Bayes rules have been

derive for multiple decision problems by Deely [1965], Van Ryzin [1970],

Huanj [1975], Van Ryzin and Susarla [1977], and Singh [1977]. However, the

forms of densities of the populations that these authors considered are either

c(,)'i,(x)e , for continuous case or c(O)h(x)ex, for discrete case, and the

loss function are either squared error or merely max ,-n. type. Fox
ljk

L197,i] discussed some estimation problem under squared error loss, in which

empirical Bayes rules were derived for uniform distributions for the first

time. Barr and Rizvi [1966], and McDonald [1974] also considered selection

problems related to uniform distribution by subset selection approach. The

problem considered in this paper is related to uniform distributions and can

*This research was supported by the Office of Naval Research contract
N00014-75-C-0455 at Purdue University. Reproduction in whole or in part
is permitted for any purpose of the United States Government.
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be illustrated by the following example. Suppose that there are k drugs for a

certain disease, and the effect of drug i follows an unknown distribution Gil

1 i - k. The effectiveness of drug i is tested on n patients (For different

druqs, different groups of patients are used. If the same patient has to be

used for niore than one test, let there be a wash-out period between tests,

so the effects of different drugs are independent.). Let oij be a measurement

of the effectiveness of drug i on patient j. Drug i cures the disease of patient

j it ii "o nd hence is entitled as a good drug, otherwise it is a bad drug. 10

is caiod the control oarameter. In general, oij is unknown and will diminish grad-

ualiv as time :rassed Lv, so a diagnosis will yield a result Yij which we assume

to be uniformly distributed over (0, e ij). Our purpose is to decide on the

quality (good or bad) of the k drugs on the next consulting patient based on

Y (I - i k, I - j -_ n) and X. (1 - i _, k), where Xi  is the diagnostic

result of drug i on the present patient. In Section 2, a general formulation

is given and empirical Bayes rules are derived for selecting populations

better than a known control when the populations are uniformly distributed.

In Section 3, the same problem is considered except that the control

parameter is unknown. In Section 4, empirical Bayes rules are found for

truncation parameters (that is the densities are of the form pi(x)ci(ui)l(0i)(x)).

Rate of convergence is also discussed. Monte Carlo studies are carried out for
o2

the priors G(0o) (). The smallest sample size N is determined to
c

guarantee that the relative error is less than c.

2. Known control parameter
Assume that r,' "2.'. 1k are k populations and i - U(Ooi), where ei

is unknown for 1 < i k. Let 0 be a known control parameter, we define ri
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to be a tjood population if and to be a bad population if i  0O

Let - (-I ..... "'k , 0 for all 1 i • ki. For any -. .), let

A(,) i '0' and 3(, ) i . ' :, then A(',) (B(',)) is the set of

indices of (ood (bd) pO)ulitions. Our qoal is to select all the good popula-

tions and reject the Lad ones. We formulate the problem in the empirical

Bays !railework a'; tO] Iw

(1 Let k S ,..... ...... L be the icLion space.

When we takc a 'iun , we say i: ip lood if i - S and -i is bad if

(6 o) '' K
I(.,%) I i.:- ,)\ ( i- 0O) 1-2  i. BI? ( ' - i

is the los'; function. (2.1)

k
3) dG(, ) ' di(.,i) be an unknown prior distribution on c3, where

,. has a continuous pdf qi.
11

(4) t.et (,,i ,Yil) ..... in Yin) be pairs of random variables from 7 i and

...... U(O i ) for 1 i - k, 1 - j - n. Let Y = (Ylj ". kjL

then Yi denotes the revious j-th observations from ''l ....

k
(1)) let X (X 1 .... Xk) le the present observation and f(x () [I- i=1 1i

[(. ..i) (xi). Since we are interested in Bayes rules, we can restrict

(,ur attention to the non-randomized rules.

(6) let I) A * is measurable}, then r(G) =  inf r(G,6) is the

rinirum , Bayes risk.

lhe deci',ion rules (,'n(x, ¥l ' ''Y is said to be asymptotically

optimal (a.o.) or empiri(:al Bayes (e.B.) relative to G if rn(G,,rn)

-jr n(X,Y l  ..... Yn))f(x,,,)dG (f)dx , r(G) as n .. For simplicity,
--



4

n(X'Yl .... yn will be denoted by 6n(x).

Let mi(x) be the marginal pdf of Xi and Mi(x) be the marginal

distribution of Xi . Then we have

mi(×) - f dGi(.,) for all x 0 0, (2.2)
X

and

Mi(x) - f 1 dG (-)dt =f f 1 dtdGi(o)+J f dtdGi(O)
0 t j 0 0 0

xMi(x) + Gi(x).

Hence, Gi(x) = Mi(x) - xmi(x). (2.3)

Now, the loss function defined in (2.1) can be expressed as

L(,,,S) 7 [L2( _Y1i (o oi)-kl( iei  I (0 , )0 )]

i* s 2O'ol -1) ((o,0)(0

k
+ L ( -00)l 0,-)(9i)" (2.4)

The second sum in (2.4) does not depend on the action S. To find the

Bayes rule we can omit it, and only consider the first sum as our loss

from now on. Then,

r(G,1)= f Y [f L2(eO-ei)f(xle)dG(o)i c ( x ) O i < -O 0

- f Ll(oi-eo)f(xIe)dG(o)1dx.
Oi >O0

So, if SB(x) S* is the Bayes rule, one finds i E S* if

fL ( 0Oi) dG1 ()
(O or ll (x ,) 0)

f L(O-o0) -- dGi(O), Hence,
i0vx1 1
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S* - Iix i  1 0 i ix i  " ; 0 and Hi(xi) c i ('O0 )l where

Hi(x = L2 00  f dGi(o i)+ L2 Gi(x) and
x. i

( i() = L2 Gi ('"o)+Ll ( -Gi ( o) )-Lu 0  f i-dGi(i).
0 1

Since hi(xi) is decreasing in x i for x i  0 0 and H(o) ci(o0 ), so

S* i x i  " 0-bi where b i . 0 satisfies H()0o-b i ) = ci(oo). This shows

for any (1, Gupta type rules are Bayes rules (see Gupta [1958,1963,1965]). Now,

since G is unknown, the Bayes rules are not obtainable. We wish to find

a sequence of rules , (X) = to be a.o. Let

n n=l

G. X i ) = Hi(xi) - Ci(0 )

and

S (X) = < 00,  0}.
1 0' 1G (xi)_01

Also, for any i (I i k), let , i,n(xi) = Ai(xi, Yil. . .Yin) for all

n 1,?..., be a sequence of real-valued measurable functions, we define

S n0 ix 0 and Am (xi) 0 (2.5)

and

n (X) i x O }  j Sn(x ). (2.6)

Orie can show that

Ihotrerm 1.1. If ' dG ) . V i = 1,2,. ,k, and A i,n(xi) AG (xi) in

(p) tor almost all x 0" Fhen i' n (x)fn= defined by (2.6) is e.B.

Proof: [or all I , , let
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.'S X = f Th i 0 fj C S and xi 0 if i '6'S).

Now, for any x., ~S' "B(X) =S j SB(x), then

- I Lf L(-')f(xje)dG(e)-f "0il(O 1-80)f(xjO)dG(O)]

- -Q(x) + A ~G.(xi) !I m.(x.
i~s s B (X) 1 j~

where Q~x) =f Ll(0i-;00 )f(xHO)dG(o).

Simiflarly, for x r- , we have

- -Q(x) + A G~ (xi) n m.(x.)

Hence, if A. i(x i) ' PGi(x.) in (P), then

[L,. LeB(x_))lf(xlO)dG(O)

2 G (xi)-"i n(xi)Ij~ B j m.xiCSn(X) 1 i

+ )A.~ CX.) fl m.(x.) (2.7)
iCS nCx) ic-S 8(X) 1 i 3~

+ ). IA11)- G~Uiim(
iC-SB(x) 1~~~ ) A x~ jtij (xj

k
2, 11m.(x.

with probability near I for n ,N. Note that (2.7) is non-positive by the

definition of Sn(x). Thus, we have proved
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f L(o,6 (x)) f(xlH)dG(o) fL(u,6,(x))f(xjo)dG(O)

in (p) for all most all x. By Corollary I of Robbins [1964], {)n(x)1 1 isn n~li

e.B. This completes the proof.

In view of (2.2) and (2.3), we have

G.(xi) = L2mi(xi)(,o-xi) + L2[Mi(xi)-Mi(rO) ] + LI[Mi(O0)-I1.

Hence, if we define

:.* (x) = L2m I (xi)( O-xi) + L [M n(xi)-Mi.n (O0
)]

10 1i,n i 2 in i,n 0

+ L [1 Min(O0)-I] (2.8)

1 I )

where M i,n(x) -n L I(- ,x](Y iJ)
jl

and iII (X) I [M (x+h) - Mi (x)1, (2.9)
1,0 h i,n n

then *,n (xi) . (x.) in (p) a.e. in x, if h = h(n) -, 0 and nh as n + c.
1,0 1

So, by Theorem 1, 6n(x) = {ijx i > e0 {ilx i < 6OAn (xi) < 01 is e.B.
n~~ i 01n 1-

Remark: In (2.8), M i,n(x) and mi,n(x) can be defined as any functions such

that M i,n(x) + Mi(x) in (p) and mi,n(x) -' mi(x) in (p) for almost all x.
0,1 n x-Y.

Ior exa,,,ple, let m ,n(x) nh w(---h-) where w( -) 0 satisfies

(i up w(x) K for some constant K,

(ii) w(x)dx ]

(iii) lim xw(x) - 0
X '
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0

and h h(n) satisfies h 0, nh as n then m.0 (x) is a consistent

estimator of i(x) (see Parzen [19621).

3. ;0 unknown

Let '0 be a control population and 0 - U(O'o0) with 0 unknown. Let

y0 .... YOn be the past data collected from R0, Based on this further

information, we will search for empirical Bayes rules for selecting populations

better than control. Note that now o = (oO,el.... k), x = (xoxl.....xk) and

k
G( ) G,(<i). Under the loss function in (2.4), the Bayes rule 68 is:

i=0 i 1

B(x) if

L I 1 J" 1 (o0 -o i)dGi( )dG (2 0_x 0 (Oio]0 i(x1 ; i i 5O)

,,---1 (0 -e )dGi(oi)dGo(eo).
x0 0 (, Ol,) i(xi, ) ei

Henre, B(X) if

i xi - and GoGi(xOlxi) 0, wherel G l

0 (xr),i) (L -L2)]f mi(o 0 )dGo(eO ) + j mo(ei)dGi(oi)]

x. X.1 1

- Ll[1-Gi(xi)]m 0 (x0 )+mi(xi )[ L2+(Li-L 2 )Go(xi)-LiG 0 (xo)] (3.1)

or

(ii x I  x0 and 2 GG(x 0 ,xi) - 0, where

, (xox 1 ) (L -L mi( o)dGo( 0o) + f m0 (oi)dGi(oi)]
xGoGi  0 1L2) Xo x0

- r 0(x0)[LI+(L 2-L)Gi(xo)-L 2Gi(xi)] + L2mi(xi)(l-Go(xo)). (3.2)
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When L L., L, the Bayes rule is dIreatly simplified. We find
I

i if

0.Go x() x I n 0 mo X ) G( xi)]-mi~ xi )[ -o ) O.

Let , ,.i i" (x I f o 0 where

nI 'x G~ I i(xi " xi CO

i n( ) is defined in (2.9), and! G in(x i  Mi,n(xi)

. 1. Then. I I) n . by Theorem 3.2. When L1  Y '2

)np rieds to find (oni 0 tent estimators of F mi (o)dGO(,; O ) and Jmo(Oi)dGi(bi
a a

I et MI $ rid v, (Y) be defined by (2.9) with h = h(n)

1., , 1,' -0 , I as n If [) d i( (0) for all i = k,1,...,k,

.... *~, 
1  (llx r. xdh rix) in (p) for any a 0.

) n i

n , ,I .1 r th ' dO G ) for all 0 i • k. If for all0
.1, 2

n " , 9) . (x,,xi) in (p) for x, x. and Ai (XO xi)

0

S in x 0' i O  Then

i 
ri 

")

. ,nd "i n X0~x IX I

I nd *2 (' 1;1 0 (3.3)
i i a Ci ri

,:Ief in .111 er31 1 iq) I 'iI, !d'ye ,. rule .



I G(xOI m~ mix. + A 2 (x0 x. mi .(x)
i*-~(, iG0 i t iCS*(x) Gi' G0 0 i /i 3

22

weeS*(x) W~x. >x 0 and ' OG., ( 0 x) 0.1,

and FL(,, *(x))f~x>,)dG(f)

S(xOxi) m.(x.)+ ' AG 2 ( 05x1 ) 11 m(x.)
iES1  i'0 j/i 2 GPG0 (x j~

izSn(x ) iE~Sn(x) i

Now, following the same method as in the proof of Theorcm 2.1, we can show

Lx .. G x~- 1 m.(x) AG r (x0 i) P m.(x)

in (p) for 1,2. Hlence 1j)Wl"1  is e.B. This completes the proof.

Now, let

1 , x x (L 2-L I){ x I in n(x~dm r~nv (X + xm n (x)dm i(x)l

-L1[1-G. n(xi)]mO (xO)+mi.n(xi.)[L2+(IL)

G On (xi )-L1 G Gn(XO)I' (3.4)

and

~i ,n (Th~x) i (L2-h xm. i,n (x)dm O,n ( X) + f xm n (x) dm i(x)l

+ L2 1-Go n(xO)]ni. n(xi)-mO nXO )[[ 1(L 2 -L1)G i ( 0)

0 2,f 1 in 0x (0)

where G.i~ (x) M.i~ (X) -xm. i(x). (3.5)
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Then, by Theorem 3.1 and Theorem 3.2 (3.3), (3.4), and (3.5) define an

empirical Bayes rule.

4. Generalization and Simulation

Let pi(x) be a positive continuously differentiable function which is

defined over (0,,,,) for 1 < i - k. Let ci(o)- f pi(x)dx for e > 0, then
0

f(xlO) = Pi(X)ci())I(oO) (x) is a density function and o is a truncation

parameter. In this section, we assume that 7i fi(xloi) for 1 < i < k.

Under the formulation of Section 2, we wish to find empirical Bayes rules

for these more general density functions. For simplicity, we assume that

= L2 = L and that o0 is known. Also we assume Gi(o) has a continuous

density gi(o) with a bounded support [0,a i] with a known ai for all I < i < k.

We find

mi(x) = fi(xjo)dGi(o) = pi(x)f ci(o)dGi(O).
0 x

If we follow the same discussion as in Section 2, we can show that the Bayes

rule 6B is i c 6B(x) iff

(i) xi  0 00 , or

1x 
1

(ii) x i  0 0 and o0 f ci(x)dGi(x) f xci(x)dGi(x).
x xi

Hence, B(X) = {lxi _ oo-d il where di- 0 satisfies f (e0-x)ci(x)dGi(x) = 0.
di

et di, n = di,n(Yil .... in
) be a consistent estimation of di , then

anx) = {iixi °-di n is e.B. and they are (weak) admissible in the

sen e that 60( " l .... Y )  is an admissible rule for the non-empirical problem

for 11 Yl9 .... ln and n (see Houwelingen (1976). Meeden (1972)). However,
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to find such a sequence {di nn is very difficult. In view of Theorem 2.1,

a more practical way to find empirical Bayes rules is to estimate

f xci(x)dGi(x).
X.

Theorem 4.1. Let p.(x) and G.(x) be defined as above. If m. (x) is
1 1 1 ,n

defined by (2.9) with h -, 0, nh

then

Oi xp.(x) 
m i

f 2 m. (x)dx f xmxxi  Pi2(x) i,n( xi Pi, dmi,n~ x

1 11

- f xci(x)dGi(x) in (p).
x

Proof: See Appendix B.

Now, let

00mi n(Xi )  C'i x i xp!(x)
At (X-) 0 , 1 f x d. (x) mi- I i. (x)dx, (4.1)
i,n 1 TTiTV ) . x1( n( 2,n 2i xi  xi  p1 (x) '( dx

then 6*(x) = OO} U {ix i < 0 and At, (xi) < 01 (4.2)

n - {i 01 'i 0 1,, n

defines an empirical Bayes rule.

The following lemma is a direct result of Lemma 3 of Van Ryzin and

Susarla [1977].

Lemma 4.2. Let AG(x) = f (00-t)ci(t)dGi(t) I(o'ai) W.

k
then 0 < r(G,6*) - r(G) = X {IHlIAG (x)Ipi(x)IP[A0,(x) < O]dx

+ fH1AG (X)Ipi(x)P(A",n(X) > O]dxj
1 G1
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where At (x) and 6* are defined by (4.1) and (4.2) respectively, and
1,n nl

H'. = ixlx "0 and G.(X)- 0) and H2 = lxI 0 0 and AG.(x) <0.
1 1

0( n)
Now, let 0(,x denote a quantity such that 0 '.lim - c. Then

n rf - (In

since t.G.(x)1Pi(x) Mi for all x u.0 for some constant Mi, so11

k
rn(G, *) - r(G) YiM( f p tn(x) - Oldxn n ji ] H I 1,

1

+ f P[A', (x) - ]dxl.

1,

Therefore, if for all x < 60

P[ (x)-.G (x): > jAG(x)l = )O(a as n -

1 1

then

rn(G,6*) - r(G) O(n

Now, by the inequality

Var[Atn(X)]

I n 1 - [l G G(X)-IAG (x)-EAt (x)1] 2

we cunclude that if Var[A ,(X)] = O(- ) for all x < 60 then

rn(G, ) r (G) = 0O(rn)nnn

In the following, we have carried out some Monte Carlo studies to see

how fast the derived empirical Bayes rules converge. We let Xi - U(O,e i )

for i = 0,1. o0 is treated as an unknown. Assume that gi(e) (Oc)

for i = 0,1 and L = L2 = 1. The smallest sample size N such that

Irm(G,6*)-r(G)l
Relative error - rFG) -
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for N-4 < m < N is determined. The values of N corresponding to selected

and c are shown in the next table for h n-I/4, for h n" 5 and for

h = n-I 6, where h is used to define (2.9).
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Appendix A

Proof of Theorem 3.1.

For i fixed, F xmi,n(x)dm0  (x)
b ,n

1 (x)

n) h-  Zl L Iaxl(x,x+h](Yijdl[Yo )
n- h' j=1 V'=1 a O'J J 09. ' 09

1 1 n nl

X. (U -V), where
n 2 h j 1 j k

U. Vo - l(a,-) (Ok-h)l(Y _h,YoZ]( ij

Vj = Y o i (a,-.,)(YOz)I(YoR,Y ot+h](Yij).

Since YoW M (x) and Y ij Mi(x) for 1 < j, z < n, so

Ef xmi,n(x)dmon(x) -p E[U 1 1V
a h

x+h1
x h dMi(Y) [mO(x+h)-mO(x)]dx.

a x

Now, by (2.2) mi(x) is decreasing in x, hence

x+h Ih -1 - 1f dMi(Y) .SMi(x) < - [1-Gj(x)]. (A.1)

x

x+h
Then Ix. ff dMi(y) [mO(x+h)-mO(x)]l

x

[1-GWl dG(e) < 1 gO(x+Sh), for some 6 E [O,1].
x

The last term is integrable over (a,oo), then by LDCT
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Ef xm~ i(x)dm On(x) Jxmi (x)m6( x)dx
a 'a

-fm 1 (x)dG O(x) in (p) if h 0 as n (A.2)
a

Now, Var fxm i(x)dm O(x) = Va 1U 1y-

a ~~~ J, jr~ z U~

I Var(U 11-V11 ) + 24'-l Cov(U 11-V11  1 - 1 ) A
n h' n 2h4il 1-2*(A3

But Var(U 11-VI1 ) -[[(U 1 -V 11 )
2] U21 + E(V1 2 bcue ]

and I[(U )

a hx f dMi(y)dM 0(x+h)

ax~

fx 2.-1- (1-Gi(x))dM (x+h) fxdM0(x+h)a a

<E 0 [X] = E 0 [E[Xle0 11= E 0[80]

hence Var(U11-V11) 0 [00] for all h >A.0.

Meanwhile, Cov(U 1 1-Vi1, t12-V 12) = Cov(U",,U1 2) + COV(V 11 1V 12 )-COV(U ilv 12).

Cov(V11,U1 h' a d - Go ( 1 , 12) 1 <~ h7 E(U11IU12) + E(U 11)E(U12)] because

U.v 0 for all 1 v, n.

h~ 2( 11U12) = 2~ f [f ydMA(yh)II dM.(x)
hhO ap)nxhx

I X2 a+h x

h 2 h- h~a ydM 0(y+h)J dM i(x)+ 2 [ ydM0 (,y+h)]2 dM.(x).

x 
1Because If- ydM0 (y+h) f y f-o dG0(O)dy

xh x-h y+h

x Iif Y_+ y<h nsmlry
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x a+h
f ydM0 (y+h) < f ydMo(y+h) < h for a < x < a+h,

a a

we get 1 E(U1  2 ) 1_Mi(a+h) + Mi(a+h) - Mi(a) = 1-Mi(a).
h 2 1

The same argument shows that h E(Ul) < l-Mi(a)

1 E(Vll) < l-Mi(a),

hence I-- Cov(U1l,U12)! _ 2[1-Mi(a)]. This implies that

h2 ICov(Ull-VllU 12 -V12 )1 <8[l-Mi(a)] for any h > 0. (A.5)

By (A.3), (A.4) and (A.5)

Var f xmi,n(x)dm O ,n(x) - 0 if nh2 _, 0 and h 0 0. (A.6)
a

Now, (A.2) and (A.6) implies that

a xmi,n (x)dm o,n(X) - mi(x)dGo(X) in (p).

a a

This finishes the proof.
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Appendix B

Proof of Theorem 4.1.

First, E X1 1 [m (X-ih)-m.(x)]dx
~{)dm ~(x) =IP?.TxTf

X. 1 X. 1~

Ct 1

xdm, (x) by LOCT.
X. 1

Now, Var f dm in(x) =Var[ -h (U -V.)

Y. .-h
where U. -( ":1 - Ixi(V. -h), and

Y.-
-. 13 I (Y

:T(y7;7 [ X -,c i ]

Hence, Var f X dmi (x) 2 Var(U J
x. nh2  1

< -j E[(U1 -V n2  f 1 (--T -Pi-Xh )]2dMi(x)

nh2  Ixih

+ 1 1 P~h]dix ~ dM(x
ai 1x. p.(x)

1 ax d X 2 +2 mxE x 2
I ~ [- jj. ma LF7} ~- mx p x)
nXCLXM ct1] I xE [xiOi I

0 if nh -

We see that

f X dmin.f d (x) in (p).
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Simi larly m. (xd -- M(~xi (p).
xi P.(x) x pi(x) i(dx n

Sm.(x)
Sirlct x ci X)dG.i(x) x F d-1 1 dx Pi5(x

xpj'x) (t
II -j- m(x )dx - f ~- T-y dm.(x)q

x i P ~ ~ x ) x . 1 1-

the proof is completed.
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